1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
| import tensorflow as tf
W = tf.Variable(tf.zeros([2, 1], name="weights")) b = tf.Variable(0., name="bias")
def inference(X): return tf.matmul(X, W) + b
def loss(X, Y): Y_predicted = inference(X) return tf.reduce_sum(tf.squared_difference(Y, Y_predicted))
def inputs(): weight_age = [[84, 46], [73, 20], [65, 52], [70, 30], [76, 57], [69, 25], [63, 28], [72, 36], [79, 57], [75, 44], [27, 24], [89, 31], [65, 52], [57, 23], [59, 60], [69, 48], [60, 34], [79, 51], [75, 50], [82, 34], [59, 46], [67, 23], [85, 37], [55, 40], [63, 30]] blood_fat_content = [354, 190, 405, 263, 451, 302, 288, 385, 402, 365, 209, 290, 346, 254, 395, 434, 220, 374, 308, 220, 311, 181, 274, 303, 244]
return tf.to_float(weight_age), tf.to_float(blood_fat_content)
def train(total_loss): learning_rate = 0.0000001 return tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss)
def evaluate(sess, X, Y): print(sess.run(inference([[80., 25.]]))) print(sess.run(inference([[65., 25.]])))
with tf.Session() as sess: tf.global_variables_initializer.run() X, Y = inputs() total_loss = loss(X, Y) train_op = train(total_loss) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord)
training_steps = 1000 for step in range(training_steps): sess.run([train_op]) if step % 10 == 0: print("loss: ", sess.run([total_loss]))
evaluate(sess, X, Y)
coord.request_stop() coord.join(threads) sess.close()
|